Communication

Imidazo[1,5-a]pyridine: A Versatile Architecture for Stable N-Heterocyclic Carbenes

Manuel Alcarazo, Stephen J. Roseblade, Andrew R. Cowley, Rosario Fernndez, John M. Brown, and Jos M. Lassaletta
J. Am. Chem. Soc., 2005, 127 (10), 3290-3291• DOI: 10.1021/ja0423769 • Publication Date (Web): 17 February 2005

Downloaded from http://pubs.acs.org on March 24, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 30 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Imidazo[1,5-a]pyridine: A Versatile Architecture for Stable N-Heterocyclic Carbenes

Manuel Alcarazo, ${ }^{\dagger}$ Stephen J. Roseblade, ${ }^{\dagger}$ Andrew R. Cowley, \ddagger Rosario Fernández,§ John M. Brown, ${ }^{\ddagger}$ and José M. Lassaletta*,†
Instituto de Investigaciones Químicas (CSIC-US), Américo Vespucio 49, E-41092 Seville, Spain, Departamento de Química Orgánica, Universidad de Sevilla, E-41012, Seville, Spain, and Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.

Received December 19, 2004; E-mail: jmlassa@iiq.csic.es

N -Heterocyclic carbenes (NHCs) have emerged during the past decade as a new type of stable compounds ${ }^{1,2}$ and as a powerful class of C-ligands. The stabilizing properties by NHCs, expressed by strong metal carbene bonds and slow dissociation rates, have been key for the development of a number of applications in catalysis. ${ }^{3}$ To exploit further the potential of NHCs as C-ligands, it is necessary to provide additional tools for the tuning of their electronic properties, an aspect where the more developed trivalent phosphorus-based ligands (phosphanes, phosphites, phosphoramidites, etc.) offer much higher variability.

The construction of benzannulated derivatives is a very simple strategy to modify the properties of Arduengo's "original" imidazol2 -ylidenes $\mathbf{A},{ }^{1}$ as was demonstrated in the benzimidazol series B. ${ }^{4}$ An interesting variation is the bipyridine-derived carbene $\mathbf{C},{ }^{5}$ but this rather unstable carbene was never used as a C -ligand for transition metals. We now wish to report on the use of the imidazo-[1,5-a]pyridine skeleton for the synthesis of unprecedented carbenes D and the mesoionic structures \mathbf{E}, containing a single bridgehead nitrogen, and the first transition-metal complexes derived therefrom.

A

B

A straighforward synthesis of alkyl derivatives $\mathbf{2 a}, \mathbf{b}$ was accomplished by alkylation of known 1, carrying a methyl group at $C(5)$ for an eventual kinetic protection of the target carbene 4 (Scheme 1, Table 1, entries 1 and 2). A second approach was designed from formamides $\mathbf{3 c}-\mathbf{f}$, which were transformed into N -alkyl/aryl imidazo[1,5-a]pyridinium salts $\mathbf{2 c}-\mathbf{f}$ by POCl_{3}-mediated cyclization. Products were isolated either as chlorides [2c, 2d(Cl); entries 3 and 4] or as hexafluorophosphates $\left[\mathbf{2 d}\left(\mathbf{P F}_{\mathbf{6}}\right), \mathbf{2 e}, \mathbf{2 f}\right.$; entries 5-7] after anion exchange with KPF_{6}. This second route is more versatile, offering fewer restrictions in the nature of the $\mathrm{N}(2) \mathrm{R}$ group and involving more accessible starting materials.

The stability of the free carbenes 4 proved to be strongly dependent on their steric environment. Thus, deprotonation of 5-unsubstituted $\mathbf{2 c}$,f by $\mathrm{NaH} / \mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ (cat.) in dry THF resulted in the formation of a complex mixture, presumed to arise from formation and decomposition of the desired carbene. In sharp contrast, deprotonation of 5 -substituted azolium salts 2a,b,d,e proceeded cleanly to afford free carbenes $\mathbf{4 a}, \mathbf{b}, \mathbf{d}, \mathbf{e}$ (Scheme 1). These products were found to be stable for long periods at room temperature and could be isolated as viscous oils or amorphous solids and characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The ${ }^{13} \mathrm{C}$ resonance for $\mathrm{C}(3)$ of $\mathbf{4}(\delta=206-209 \mathrm{ppm})$, slightly upfield with

[^0]
Scheme 1

Table 1. Synthesis of Imidazo[1,5-a]pyridinium Salts $\mathbf{2 a} \mathbf{- f}$

entry	educt	reagent	product	yield (\%)
1	1	MeI	2a	97
2	1	BnBr	2b	94
3	3c	POCl_{3}	2c	50
4	3d	POCl_{3}	2d(Cl)	60
5	3d	$\mathrm{POCl}_{3} / \mathrm{KPF}_{6}$	2d(PF_{6})	58
6	3 e	$\mathrm{POCl}_{3} / \mathrm{KPF}_{6}$	2e	52
7	3 f	$\mathrm{POCl}_{3} / \mathrm{KPF}_{6}$	$2 f$	48

respect to Arduengo's type A carbenes, confirmed their free carbene structure.

The properties of compounds $\mathbf{4}$ as C -ligands were investigated: $\mathrm{RhImPy}(\mathrm{COD}) \mathrm{Cl}$ (ImPy = Imidazo[1,5-a]pyridine-3-ylidene) complexes 6 were prepared by: (a) direct metalation of carbenes 6 with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ (Scheme 1, Table 2, entries 2, 4, and 7) or (b) transmetalation of silver carbene complexes 5, available from halides $\mathbf{2 a - c}$ and $\mathbf{2 d} \mathbf{(C l})$ (entries 1, 3, 5, and 6). The single-crystal X-ray analyses of $\mathbf{6 b}$ and $\mathbf{6 d}$ (Figure 1) revealed distorted squareplanar geometries $\left(\mathrm{CRhCl} 92.8^{\circ}\right.$ and 95.4°, respectively), and marked differences in NCRh angles (6b: 132.8° versus 123.5°; $\mathbf{6 d}$: 131.2° versus 124°), both attributed to steric repulsions. As in related structures, ${ }^{6}{ }^{1} \mathrm{H}$ NMR studies indicated high configurational stability due to restricted rotation around the $\mathrm{C}(3)-\mathrm{Rh}$ bond, even for $\mathrm{C}(5)$-unsubstituted derivatives such as $\mathbf{6 c}$. Different behavior was observed when $\mathbf{2 d}\left(\mathbf{P F}_{6}\right), \mathbf{2 e}$, or $\mathbf{2 f}\left(\mathrm{X}=\mathrm{PF}_{6}\right)$ were reacted with $\mathrm{KO}^{\mathrm{t} B u}$ and $\left[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}_{2}\right.$: cationic $2: 1\left[\mathrm{Rh}(\operatorname{ImPy})_{2}(\mathrm{COD})\right]^{+}$

Table 2. Synthesis of Silver and Rhodium Complexes 5, 6, and 7

entry	starting material	X	$\mathbf{5}$	yield $(\%)$	$\mathbf{6}$	yield $(\%)$	$\mathbf{7}$	yield $(\%)^{a}$
1	$\mathbf{2 a}$	I	$\mathbf{5 a}$	63	$\mathbf{6 a}$	91		
2	$\mathbf{4 a}$	-	-		$\mathbf{6 a}$	93		
3	$\mathbf{2 b}$	Br	$\mathbf{5 b}$	92	$\mathbf{6 b}$	96		
4	$\mathbf{4 b}$	-	-		$\mathbf{6 b}$	94		
5	$\mathbf{2 c}$	Cl	$\mathbf{5 c}$	98	$\mathbf{6 c}$	96		
6	$\mathbf{2 d C l}$	Cl^{2}	$\mathbf{5 d}$	96	$\mathbf{6 d}$	92		
8	$\mathbf{2 d P F}$	$\mathbf{P F}_{6}$					$\mathbf{7 d}$	$71(82)$
9	$\mathbf{2 e}$	$\mathbf{P F}_{6}$					$\mathbf{7 e}$	$72(86)$
10	$\mathbf{2 f}$	PF_{6}					$\mathbf{7 f}$	$84(93)$

${ }^{a}$ Yield of recrystalized product. In parentheses: yield before crystalization.

Figure 1. ORTEP drawings for Rh-ImPy complexes 6d, 7e, and 13.
complexes 7d-f were obtained, even though the $\mathrm{Rh} /$ carbene precursor ratio was 1:1 (Scheme 2). Good yields of compounds 7 were observed for reactions performed with the right $2: 1$ stoichiometry, even for bulky ligands such as $\mathbf{4 d}, \mathbf{e}$. The structures of $\mathbf{7 d}-\mathbf{f}$ were also analyzed by X-ray diffraction (see 7 e in Figure 1). It is noteworthy that all these molecules exhibit C_{2}-symmetric geometry as a result of the "antiparallel" arrangement of the carbene ligands, necessary to avoid severe steric interactions. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra recorded for the crude products confirmed the absence of the meso diastereomers that would result from a "parallel" arrangement of the ImPy ligands in 7.

The structure of the imidazo[1,5-a]pyridinium salts suggests additional possibilities for the synthesis of unusual structures by deprotonation at $\mathrm{C}(1) .{ }^{7}$ To this aim, salt $\mathbf{1 0 a}$ was reacted with $\mathrm{Ag}_{2} \mathrm{O}$ to afford Ag complex 11 in 89% yield (Scheme 2). Transmetalation with $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ did not afford the expected $\mathrm{Rh}(\mathrm{I})$ complex, but the corresponding $\operatorname{Ir}(\mathrm{I})$ complex 12 was obtained in 38% yield by reaction with $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$. In contrast, salt $\mathbf{1 0 b}$, reacted with $[\mathrm{Rh}-$ $(\mathrm{COD}) \mathrm{Cl}]_{2}$ under Herrmann conditions ${ }^{8}$ to afford complex 13 in 39% yield. Additionally, "carbene" 14 was trapped by reaction with selenium to afford $\mathbf{1 5}$ in 61% yield. The X-ray structure of $\mathbf{1 3}$ (Figure 1) reveals a standard $\mathrm{C}(1)-\mathrm{Rh}$ bond length of 204.3 pm , but a $138.8 \mathrm{pm} \mathrm{C}(1)-\mathrm{C}(9)$ bond, longer than in $\mathbf{4}$ or $\mathbf{5}$ (135.1 135.9 $\mathrm{pm})$. This fact and a higher degree of delocalization in the pyridine

Scheme 2

ring support a strong contribution of the mesoionic form \mathbf{I}, as drawn in 11, 12, 13, and 15.

Finally, dicarbonyl Rh complexes 16 and 17 were prepared from 6a and 13, and their $v(\mathrm{CO})$ stretching frequencies were used to evaluate the σ-donor ability of 4 and 14 . The results indicate that these carbenes are among the strongest σ-donors in the unsaturated series, but still weaker than the best known C-ligands. ${ }^{9}$

16: $v_{\mathrm{CO}} 2079,2000 \mathrm{~cm}^{-1}$

17: v_{CO} 2072, $1992 \mathrm{~cm}^{-1}$

In conclusion, the imidazo[1,5-a]pyridine skeleton is a versatile platform for the synthesis of new types of free NHCs and their transition-metal complexes. The effect of electron-withdrawing or -donating groups in ImPy ligands, and the development of applications in catalysis, is currently the object of study in our laboratories.

Acknowledgment. We thank the MEC (Grant CTQ2004-00290/ BQU) and the EC (HPRN-CT-2001-00172 and HP-CT-2001-00317) for financial support. We thank Dr. Jürgen Klankenmayer for assistance in the crystalization of samples for X-ray structure analysis.

Supporting Information Available: Crystallographic data for $\mathbf{6 b}$, $\mathbf{6 d}, \mathbf{7 d}, \mathbf{7 e}, \mathbf{7 f}$, and 13, and experimental procedures (CIF, PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.
(2) (a) Bourissou, D.; Guerret, O.; Gablaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-91. (b) Alder, R. W. In Carbene Chemistry: From Fleeting Intermediates to Powerful Reagents; Bertrand, G., Ed.; Marcel Dekker: New York 2002; Chapter 5, pp 153-176.
(3) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290-1309.
(4) Hahn, F. E.; Wittenbecher, L.; Boese, R.; Bläser, D. Chem.-Eur. J. 1999, 5, 1931-1935.
(5) (a) Weiss, R.; Reichel, S.; Handke, M.; Hampel, F. Angew. Chem., Int. Ed. 1998, 37, 344-346. (b) Weiss, R.; Reichel, S. Eur. J. Inorg. Chem. 2000, 1935-1939.
(6) Chianese, A. R.; Li, X.; Janzen, M. C.; Faller, J. W.; Crabtree, R. H. Organometallics 2003, 22, 1663.
(7) For C4(5) carbenes, see: (a) Gründemann, S.; Kovacevic, A.; Albrecht, M.; Faller, J. W.; Crabtree, R. H. Chem. Commun. 2001, 2274-2275. (b) Gründemann, S.; Kovacevic, A.; Albrecht, M.; Faller, J. W.; Crabtree, R. H. J. Am. Chem. Soc. 2002, 124, 10473-10481. (c) Lebel, H.; Janes, M. K.; Charette, A. B.; Nolan, S. P. J. Am. Chem. Soc. 2004, 126, 50465047.
(8) Köcher, C.; Herrmann, W. A. J. Organomet. Chem. 1997, 532, 261265.
(9) (a) Mayr, M.; Wurst, K.; Ongania, K.; Buchmeiser, M. R. Chem.-Eur. J. 2004, 10, 1256-1266. (b) Denk, K.; Sirsch, P.; Herrmann, W. A. J. Organomet. Chem. 2002, 649, 219-224. (c) Bazinet, P.; Yap, G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2003, 125, 13314-13315. (d) Lavallo, V.; Mafhouz, J.; Canac, Y.; Donnadieu, B.; Schoeller, W.; Bertrand, G. J. Am. Chem. Soc. 2004, 126, 8670-8671. (e) Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Chem.-Eur. J. 1996, 2, 772-780.
JA0423769

[^0]: \dagger Instituto de Investigaciones Químicas (CSIC-US).
 \# University of Oxford.
 § Departamento de Química Orgánica, Universidad de Sevilla.

